Equations

There might seem a lot to learn but in reality they fall into several general patterns, plus there are a few exceptions just to be memorised.

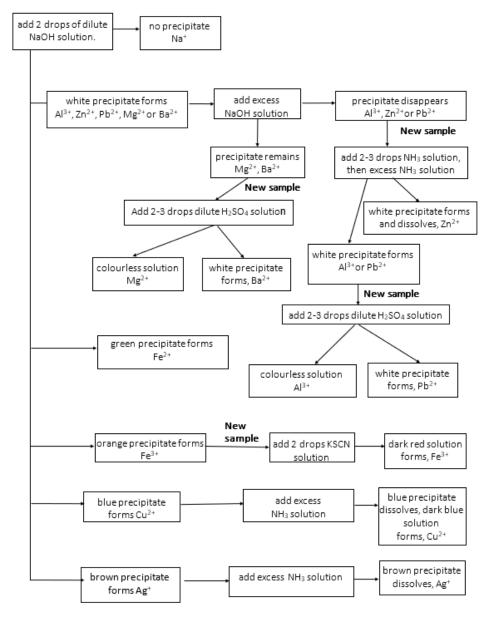
Anion equations

Addition of a few drops of **barium nitrate solution** (which contains $Ba^{2+}(aq)$ and $NO_{3}^{-}(aq)$) is needed to identify the sulfate ion, $SO_{4}^{2-}(aq)$

 $Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$

barium sulfate is white

Addition of a few drops of **silver nitrate solution** (which contains $Ag^+(aq)$ and $NO_3^-(aq)$) is needed to identify the chloride ion, $Cl^-(aq)$ and the iodide ion, $l^-(aq)$

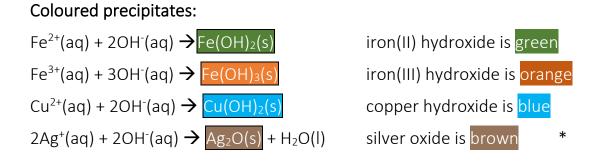

$Ag^{+}(aq) + CI^{-}(aq) \rightarrow AgCI(s)$	silver chloride is white
Ag⁺(aq) + I⁻(aq) → <mark>AgI(s)</mark>	silver iodide is (very) <mark>pale yellow</mark>

Excess **dilute ammonia solution**, NH₃(aq) is added to confirm whether the precipitate is AgCl(s) or AgI(s).

ONLY the AgCl(s) forms a soluble complex ion with the excess dilute ammonia solution, $NH_3(aq)$ and the white AgCl(s) precipitate dissolves to form a colourless solution.

*AgCl(s) + 2NH₃(aq) \rightarrow [Ag(NH₃)₂]⁺(aq) +Cl⁻(aq) or Ag⁺(aq) + 2NH₃(aq) \rightarrow [Ag(NH₃)₂]⁺(aq)

*Equations involving Ag⁺ just need to be memorised!



Cation equations

When a few drops of **sodium hydroxide solution**, NaOH(aq) (or a few drops of dilute ammonia solution, $NH_3(aq)$) are added to a metal cation, a precipitate is formed (except for with Na^+).

White precipitates:

- $Mg^{2+}(aq) + 2OH^{-}(aq) \rightarrow Mg(OH)_{2}(s)$ $Ba^{2+}(aq) + 2OH^{-}(aq) \rightarrow Ba(OH)_{2}(s)$ $Al^{3+}(aq) + 3OH^{-}(aq) \rightarrow Al(OH)_{3}(s)$ $Pb^{2+}(aq) + 2OH^{-}(aq) \rightarrow Pb(OH)_{2}(s)$
- $Zn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Zn(OH)_{2}(s)$
- magnesium hydroxide is white barium hydroxide is white aluminium hydroxide is white lead hydroxide is white zinc hydroxide is white

Addition of a few drops of **dilute sulfuric acid solution** (which contains $H^+(aq)$ and $SO_4^{2-}(aq)$) is needed to distinguish between Mg^{2+} and Ba^{2+}

 $Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$

barium sulfate is white

Addition of a few drops of **dilute sulfuric acid solution** (which contains $H^+(aq)$ and $SO_4^{2-}(aq)$) is needed to distinguish between Al^{3+} and Pb^{2+}

 $Pb^{2+}(aq) + SO_4^{2-}(aq) \rightarrow PbSO_4(s)$

lead sulfate is white

Cation complex ion equations

Some hydrated ions will react with other species in solution to form other ions, called complex ions. Note that the complex ions here are all (aq) – meaning they are soluble.

[FeSCN] ²⁺ (aq) is dark red	$Fe^{3+}(aq) + SCN^{-}(aq) \rightarrow [FeSCN]^{2+}(aq)$
[Zn(OH) ₄] ²⁻ (aq) is colourless	$Zn(OH)_2(s) + 2OH^-(aq) \rightarrow [Zn(OH)_4]^{2-}(aq)$
	or $Zn^{2+}(aq) + 4OH^{-}(aq) \rightarrow [Zn(OH)_4]^{2-}(aq)$
[Pb(OH) ₄] ²⁻ (aq) is colourless	$Pb(OH)_2(s) + 2OH^-(aq) \rightarrow [Pb(OH)_4]^{2-}(aq)$
	or $Pb^{2+}(aq) + 4OH^{-}(aq) \rightarrow [Pb(OH)_4]^{2-}(aq)$
[Al(OH) ₄] ⁻ (aq) is colourless	Al(OH)₃(s) + OH⁻(aq) → [Al(OH)₄]⁻(aq)
	or $Al^{3+}(aq) + 4OH^{-}(aq) \rightarrow [Al(OH)_4]^{-}(aq)$
[Ag(NH ₃) ₂] ⁺ (aq) is colourless	*Ag ₂ O(s) + 4NH ₃ (aq) + H ₂ O(l) \rightarrow 2[Ag(NH ₃) ₂] ⁺ (aq) + 2OH ⁻ (aq)
	or $Ag^+(aq) + 2NH_3(aq) \rightarrow [Ag(NH_3)_2]^+(aq)$
[Zn(NH ₃) ₄] ²⁺ (aq) is colourless	$Zn(OH)_2(s) + 4NH_3(aq) \rightarrow [Zn(NH_3)_4]^{2+}(aq) + 2OH^{-}(aq)$
	or $Zn^{2+}(aq) + 4NH_3(aq) \rightarrow [Zn(NH_3)_4]^{2+}(aq)$
[Cu(NH ₃) ₄] ²⁺ (aq) is dark blue	Cu(OH) ₂ (s) + 4NH ₃ (aq) → $[Cu(NH_3)_4]^{2+}(aq)$ + 2OH ⁻ (aq)
	or Cu ²⁺ (aq) + 4NH ₃ (aq) \rightarrow [Cu(NH ₃) ₄] ²⁺ (aq)

*Equations involving Ag⁺ just need to be memorised! Page | 3